to solve an equation that has logarithms , we need to always keep in mind that the domain of the log function only allows values greater than zero
because the equation a = b is the same as c a = c b , we can use this to solve logarithms
we also need to substitute each solution into the equation to check that it is valid
worked example: solve log 2 ( x ) + log 2 ( x + 6 ) = 4
log 2 ( x 2 + 6 x ) = 4∣ x > 0 , x + 6 > 0
2 l o g 2 ( x 2 + 6 x ) = 2 4 ∣ x > 0 , x + 6 > 0
x 2 + 6 x − 16 = 0∣ x > 0 , x + 6 > 0
( x + 8 ) ( x − 2 ) = 0∣ x > 0 , x + 6 > 0
x = − 8 ∨ x = 2∣ x > 0 , x + 6 > 0
reject x = − 8
x = 2
worked example: solve log 3 ( x − 1 ) + log 3 ( x + 1 ) = 1
log 3 ( x 2 − 1 ) = 1∣ x − 1 > 0 , x + 1 > 0
3 l o g 3 ( x 2 − 1 ) = 3 1 ∣ x − 1 > 0 , x + 1 > 0
x 2 − 1 = 3∣ x − 1 > 0 , x + 1 > 0
x = ± 2∣ x − 1 > 0 , x + 1 > 0
reject x = − 2
x = 2
worked example: solve log 2 ( 2 x + 1 ) = log 2 ( x − 1 ) + 4
log 2 ( 2 x + 1 ) − log 2 ( x − 1 ) = 4
log 2 ( x − 1 2 x + 1 ) = 4∣2 x = 1 > 0 , x − 1 > 0
x − 1 2 x + 1 = 2 4 ∣2 x = 1 > 0 , x − 1 > 0
x − 1 2 x + 1 = 16∣2 x = 1 > 0 , x − 1 > 0
2 x + 1 = 16 x − 16∣2 x = 1 > 0 , x − 1 > 0
14 x = 17∣2 x = 1 > 0 , x − 1 > 0
x = 14 17
worked example: solve log 10 ( 20 x ) = log 10 ( x − 8 ) + 2
log 10 ( x − 8 20 x ) = 2∣20 x > 0 , x − 8 > 0
x − 8 20 x = 1 0 2 ∣20 x > 0 , x − 8 > 0
20 x = 100 x − 800∣20 x > 0 , x − 8 > 0
x = 10
worked example: solve 1 − log 10 ( 2 x + 1 ) = log 10 ( 5 x + 8 ) − 2 log 10 ( x + 1 )
log 10 ( 5 x + 8 ) − 2 log 10 ( x 2 + 2 x + 1 ) + log 10 ( 2 x + 1 ) = 1
log 10 ( 5 x + 8 ) − log 10 ( x 2 + 2 x + 1 ) + log 10 ( 2 x + 1 ) = 1
log 10 ( x 2 + 2 x + 1 ( 5 x + 8 ) ( 2 x + 1 ) ) = 1
x 2 + 2 x + 1 ( 5 x + 8 ) ( 2 x + 1 ) = 10
worked example: solve log 2 ( x + 3 ) + log 2 ( x − 1 ) = 4
( x + 3 ) ( x − 1 ) = 16∣ x + 3 > 0 , x − 1 > 0
x 2 + 2 x − 3 = 16∣ x + 3 > 0 , x − 1 > 0
x 2 + 2 x − 19 = 0∣ x + 3 > 0 , x − 1 > 0
quadratic formula
x = − 1 ± 2 5 ∣ x + 3 > 0 , x − 1 > 0
x = − 1 + 2 5
worked example: solve 2 log 3 ( x + 1 ) = 3 + log 3 1 ( 1 + x )
log 3 ( x 2 + 2 x + 1 ) = 3 + log 3 1 ( x + 1 ) ∣ x + 1 > 0
log 3 ( x 2 + 2 x + 1 ) = 3 + log 3 ( 3 1 ) log 3 ( x + 1 ) ∣ x + 1 > 0
log 3 ( x 2 + 2 x + 1 ) = 3 + − 1 log 3 ( x + 1 ) ∣ x + 1 > 0
log 3 ( x 2 + 2 x + 1 ) = 3 − log 3 ( x + 1 ) ∣ x + 1 > 0
log 3 (( x 2 + 2 x + 1 ) ( x + 1 )) = 3∣ x + 1 > 0
( x 2 + 2 x + 1 ) ( x + 1 ) = 27∣ x + 1 > 0
( x + 1 ) 3 = 27∣ x + 1 > 0
x + 1 = 3∣ x + 1 > 0
x = 2
worked example: consider the function f ( x ) = 2 1 − x
simplify f ( − x ) f ( x ) into the form 2 k x
2 1 + x 2 1 − x
2 1 − x − 1 − x
2 − 2 x
show that f ( a ) ⋅ f ( b ) = f ( a + b − 1 )
2 1 − a ⋅ 2 1 − b = 2 1 − a − b + 1
2 1 − a − b + 1 = 2 1 − a − b + 1
solve f ( x ) = 3 for x , give answer in the form x = log 2 ( n m ) + c
2 1 − x = 3
1 − x = log 2 ( 3 )
− x = log 2 ( 3 ) − 1
x = − log 2 ( 3 ) + 1
x = log 2 ( 3 − 1 ) + 1
x = log 2 ( 3 1 ) + 1